

Using National Survey Data from Nigeria to Assess Maternal-Child Dietary Concordance and Inform Nutrition Program Strategy

JOHNS HOPKINS

BLOOMBERG SCHOOL

of PUBLIC HEALTH

Nadia Akseer¹, Andrew L. Thorne-Lyman¹, Olutayo Adeyemi², Rebecca Heidkamp¹

¹Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; ²University of Ibadan, Ibadan, Nigeria.

Poster #: P08-001-21 Contact: nakseer1@jhu.edu

Background

- Improving diet quality among young children 6-23 months is a policy priority in many low-income countries.
- Multiple factors influence complementary feeding practices including household food access, caregiver-level factors and cultural practices.
- Biological and epidemiological evidence suggests that maternal dietary patterns may influence child diet.
- Data on food groups consumed by young children are often available in large-scale national surveys (i.e. Demographic and Health Surveys, DHS), but historically these surveys have not collected maternal diet data.
- The 2018 Nigeria DHS measured food group intake in both young children (age 6-23 months) and women (15-49 years).

Objective

To describe the relationship between child and maternal diet diversity in Nigeria and highlight implications for design of infant and young child feeding (IYCF) programs.

Methodology

- Dataset: Nigeria DHS 2018, n=8975 mother-child pairs
- Outcomes: Consumption of individual food groups in the previous 24 hours, minimum dietary diversity for children 6-23 months (MDD-C, at least 5 of 8 groups) and for their mothers age 15-49 years (MDD-W, 5 of 10 groups) (WHO-UNICEF 2021 indicator definitions).
- Analysis: Compare rates of concordance and discordance between mother-child for individual food groups and MDD using McNemar's tests. Hierarchical probit regression used to identify drivers of MDD-C.
- Stratifiers and Covariates: child age, sex, maternal age, parity, women's decision-making, # household members, sex of household head, urban/rural, region, religion, wealth.

Results

Figure 2: Concordance between maternal and child (12-23 months) consumption of food groups in past 24 hours

- Nationally, 22% of children achieve MDD-C; 51% of mothers achieve MDD-W (Fig 1).
- Grains, roots and tubers were most consumed (>80%); dairy and eggs were least consumed (**Fig 2**).
- Maternal-child discordance is highest for legumes and nuts (36%), vitamin A rich fruits/vegetables (39%) and other fruits/vegetables (57%); mothers consume these more frequently. Children are more likely than mothers to consume dairy (19% vs 8%) and eggs (8% vs 4%) (Fig 2).
- Maternal-child food group discordance is consistently higher for children 6-11months than children 12-23 months. Results vary at state level and by maternal age group (data not shown).
- MDD-C probability improves with higher MDD-W (27%, p=0.000), higher maternal education (dose-response, 8%, 16%, p=000) and greater household wealth (dose-response, 5%,10% p<0.05) (Table 1).

Table 1: Hierarchical probi	t regression of	f determinants of	MDD-C
-----------------------------	-----------------	-------------------	-------

		Pred			Pred		
		Prob	95% CI	p-value	Prob	95% CI	p-value
Distal variables							
Wealth (n=8,975)	Poorest	REF			REF		
	Poorer	0.00	(03, .02)	0.837	-0.01	(04, .02)	0.390
	Middle	0.03	(.00, .06)	0.048	0.00	(03, .03)	0.993
	Richer	0.11	(.07, .15)	0.000	0.05	(.01, .09)	0.011
	Richest	0.20	(.16, .24)	0.000	0.10	(.06, .15)	0.000
Maternal education (n= 8,975)	None	REF			REF		
	Primary	0.04	(.01, .07)	0.007	0.03	(01, .06)	0.107
	Secondary	0.12	(.09, .14)	0.000	0.08	(.05, .10)	0.000
	Higher	0.25	(.20, .30)	0.000	0.16	(.10, .21)	0.000
Intermediate variables							
Rural residence (n= 8,975)	Urban	REF					
	Rural	-0.10	(13,08)	0.000	NS		0.162
Number of household members (n= 8,975)	continuous	-0.01	(01,00)	0.000	NS		0.560
Sex of household head (n= 8,975)	Male	REF					
	Female	0.02	(01, .06)	0.245	NS		
Religion (n=8,894)	Christian	REF					
	Muslim	-0.07	(10,05)	0.000	NS		0.935
Women's decision-making (n= 8,519)	continuous	0.02	(.02, .03)	0.000	NS		0.769
Proximal variables							
MDD-W (n=8,975)	No	REF					
	Yes	0.29	(.27, .32)	0.000	0.27	(.25, .29)	0.000
Child age (n=8,975)	continuous	0.01	(.01, .01)	0.000	0.01	(.01, .01)	0.000
Child sex (n=8,975)	Male	REF					
	Female	0.00	(02, .02)	0.963	NS		
Maternal age (n=8,975)	continuous	0.00	(.00, .00)	0.002	NS		0.334
Parity (n=8,975)	continuous	-0.01	(01,00)	0.002	NS		0.699

Conclusions

- Maternal and child diet diversity are suboptimal in Nigeria, and maternal diet is a primary driver of child diet.
- Legumes and nuts and fruits/vegetables are consumed by women but not consistently fed to children; IYCF programs should focus on promoting these food groups that are available in households.
- The forthcoming DHS-8 core questionnaire includes MDD-W; with these data similar analyses can be carried out across LMIC to inform program design

Acknowledgements

The DataDENT project is funded the Bill & Melinda Gates Foundation (OPP1179059).